Delayed awakening in the ICU patient: involved drugs and management

Bruno Mégarbane, MD, PhD

Department of Medical and Toxicological Critical Care INSERM UMRS 1144 - Paris Cité University Lariboisière Hospital, Paris, France bruno.megarbane@lrb.aphp.fr

I have no conflict of interest to declare

Arousal Network

1- Nucleus basalis of Meynert (basal forebrain)

2- Tuberomammillary nucleus (hypothalamus)

3- Ventral tegmental area

Physiopathology of delayed awakening

Neural-circuit mechanisms of altered arousal by anesthetic agents

Ketamine binds preferentially to NMDA-R on inhibitory interneurons in the cortex, limbic system (amygdala), and hippocampus, promoting an uncoordinated increase in neural activity.

In the spinal cord, ketamine decreases arousal by blocking NMDA Glu mediated nociceptive signals from peripheral afferent neurons in the dorsal-root ganglion to projecting neuron

Emergence from general anesthesia & stages of recovery from coma

Emergence, phase 1 - Cessation of anesthetic drugs - Reversal of peripheral-muscle relaxation (akinesis) - Transition from apnea to irregular breathing to regular breathing - Increased alpha and beta activity on EEG Emergence, phase 2 Emergence, phase 3 - Increased heart rate and blood pressure - Eye opening - Return of autonomic responsiveness - Responses to some oral commands - Responsiveness to painful stimulation - Awake patterns on EEG - Salivation (7th and 9th cranial nerve nuclei) - Extubation possible - Tearing (7th cranial nerve nuclei) - Grimacing (5th and 7th cranial nerve nuclei) - Swallowing, gagging, coughing (9th and 10th cranial nerve nuclei) - Return of muscle tone (spinal cord, reticulospinal tract, basal ganglia, and primary motor tracts) - Defensive posturing

- Further increase in alpha and beta activity on EEG
- Extubation possible

Cerebral metabolism, and EEG activity in stages of coma recovery

Brown EM. NEJM 2010

Delirium in the ICU

Relationship with delayed awakening?

Prevalence: 12 to 43%

Three subtypes according to psychomotor behavior:

- Hypoactive delirium: 54%

decreased responsiveness, withdrawal and apathy

- Hyperactive delirium: 44%

agitation, restlessness, and emotional lability

- Mixed delirium: 2%

Recommended validated methods to diagnose delirium in the ICU

The Confusion Assessment Method for the Intensive Care Unit (CAM-ICU)

To assess acute changes in the course of mental status, inattention, disorganized thinking & altered consciousness

The Intensive Care Delirium Screening Checklist (ICDSC) 8-item screening tool based on DSM criteria To assess disorientation in time and space, sleep disturbances, and hallucinations

Author		CAM-ICU Sensitivity	CAM-ICU Specificity	ICDSC Sensitivity	ICDSC specificity
Gusmao-Flores, 2012 [11]	Meta-analysis	0.8 (0.77 to 0.83)	0.96 (0.95 to 0.97)	0.74 (0.65 to 0.81)	0.82 (0.76 to 0.86)
Mitasova, 2012 [13]	Prospective observational study	76% (95% CI: 55–91)	98% (95% CI: 93-100)		
Bebawi, 2014 [14]	Multicenter prospective study	62% (95% CI: 44-76)	74% (95% CI: 59–85)	64% (95% CI: 49–77)	79% (95% CI: 63–89)
Reznik, 2020 [15]	Prospective observational study	41%	88%	77%	97%
Von Hofen-Hohloch, 2020 [16]	Prospective observational study	67%	93%	70%	94%

EEG patterns during the awake state, general anesthesia, and sleep

A	Aw	ake
	Awake with eyes open (minimally conscious state)	Awake with eyes closed (minimally conscious state)
В	General Anesthesia	C Sleep
Para	doxical excitation (minimally conscious state)	REM Non-REM stage 1
Phas Mile Phas	ie 1 MWWWWWWWWWWWWWWWWWWWWWWWWWWW ie 2 (vegetative state, coma) MMWWWWWWWWWWWWWWWWWWWWW	Non-REM stage 2 (vegetative state)
Phas	e 3: Burst suppression (coma)	
Phas	e 4: Isoelectric (coma, brain death)	
		Brown EM. NEJM 2010

Association of EEG findings with mortality and command following in patients remaining unresponsive after sedation interruption

An EEG pattern with a background frequency ≥4 Hz was associated with decreased odds of death.

None of the EEG parameters were independently associated with command following.

Legouy C. Crit Care Med 2021

Command following Unresponsive Deceased Continuous background? No 33% 11% 56% (n=2) (n=18) (n=6) (n=10) Yes (n=101) Preserved reactivity ? No 50% 50% 0% (n=14) (n=7) (n=7) Yes (n=87) **Background activity** >4 Hz ? No 33% 13% 53% (n=15) (n=5) (n=2) (n=8) Yes (n=72) 67% 7% 26% (n=5) (n=48) (n=19)

Risk factors of delayed awakening

Causes of delayed awakening

Pharmacokinetic causes

- Impaired metabolism (liver failure, hypothyroidism)
- Impaired elimination (renal failure)
- Duration of sedation
- Drug-drug interaction

Pharmacodynamic causes

- Genetic variations
- Hypothermia
- Drug-drug interaction

Toxicity

- Antibiotics
- Alcohol (withdrawal syndrome)

Metabolic alterations

- Hypo/Hyperglycemia
- Hypo/Hypernatremia
- Acidosis
- Hyperuremia
- Hyperammoniemia

Neurological causes

- Primary lesion
- Secondary lesion (brainstem localization)
- Epilepsy
- Infection

Extra-neurological causes

- Shock
- Hypoxia
- Sepsis-systemic inflammatory

Pharmacology: a dual phenomenon

Sources of individual variability in drug response

Individual variability related to drug-drug interaction

Enzymes of drug metabolism

CYP drug substrates, inhibitors and inducers

Substrate	Inhibitor	Inducer	
CYP1A2			
Haloperidol, theophylline	Ciprofloxacin, fluvoxamine	Carbamazepine, rifampicin, tobacco	
CYP2C9			
Diclofenac, ibuprofen, naproxen,	Amiodarone, fluconazole,	Carbamazepine, phenobarbital,	
phenytoin, voriconazole, warfarin	metronidazole, voriconazole	phenytoin, rifampicin	
CYP2C19			
Citalopram, diazepam, phenytoin, voriconazole	Fluoxetine, paroxetine, voriconazole	Carbamazepine, rifampicin, phenobarbital, phenytoin	
CYP2D6			
Carvedilol, haloperidol, metoprolol, paroxetine, propranolol	Amiodarone, fluoxetine, paroxetine, sertraline, quinidine		
CYP3A4			
Alprazolam, amlodipine, atorvastatin, carbamazepine, cerivastatin, darithromycin, cyclosporine, diltiazem, erythromycin, felodipine, fentanyl, hydrocortisone, midazolam, methylprednisolone, nifedipine, simvastatin, sufentanil, tacrolimus, verapamil,	Amiodarone, amlodipine, clarithromycin, diltiazem, erythromycin, fluconazole, itraconazole, verapamil, voriconazole	Carbamazepine, rifabutin, rifampicin, phenobarbital, phenytoin	

Drug transport across the membranes

Major P-glycoprotein (MDR-1) substrates

Anti-cancer drugs Doxorubicin, taxoids Vincristin, vinblastin Cardiovascular drugs Digoxin Quinidin Antiprotease Indinavir Nelfinavir Saquinavir Anti-diarrheic drugs Loperamid Antibiotics Erythromycin Immunosuppressive drugs Cyclosporine

Steroids Dexamethasone Calcium channel inhibitors Verapamil Adrenergic agonist drugs Talinolol <u>H1- anti-histamin drugs</u> fexofenadine H2- anti-histamin drugs Cimetidine Antidepressants Amitriptylin Citalopram, venlafaxine Others Colchicine Phenytoine

Differences in sedation and analgesia dosing during TTM

Medication	Proportion: 12 h n (%)	Dose: median (IQR)	Proportion: 24 h <i>n</i> (%)	Dose: median (IQR)	Proportion: 48 h <i>n</i> (%)	Dose: median (IQR)
Propofol (mg/kg/h)	421 (69)	2.3 (1.2, 3.8)	431 (70)	2.4 (1.4, 4.3)	432 (70)	2.2 (1.1, 3.7)
Midazolam (mg/kg/h)	244 (40)	0.07 (0.04, 0.13)	259 (42)	0.09 (0.05, 0.10)	258 (42)	0.06 (0.03, 0.10)
Fentanyl (mcg/kg/h)	304 (50)	1.7 (1.2, 2.3)	310 (50)	1.9 (1.3, 2.4)	311 (51)	1.6 (1.1, 2.1)
Morphine (mg/kg/h)	96 (16)	0.04 (0.02, 0.05)	101 (16)	0.04 (0.02, 0.05)	101 (16)	0.3 (0.01, 0.04)
Remifentanil (mcg/kg/h)	84 (14)	3.3 (2.0, 6.1)	87 (14)	3.5 (2.3, 6.4)	84 (14)	3.7 (2.7, 6.0)
Alfentanil (mcg/kg/min)	32 (5)	29.3 (22.5, 37.4)	31(5)	33.3 (28.3, 37.0)	15 (2)	27.8 (23.7, 33.2)
Sufentanil (mcg/kg/h)	16 (3)	0.2 (0.1, 0.3)	16 (3)	0.2 (0.2, 0.3)	18 (3)	0.2 (0.1, 0.2)

Significant differences in number of medications (p < 0.001), average dosages (p < 0.001), and titration at all time points between centers (p < 0.001)

Mean doses of sedatives and analgesics during TTM

Association of sedative and analgesia with CA patient outcome

Multivariable analysis with hierarchical logistic regression

Association with awakening after 5 days

- Higher dosing at 48 h (p=0.003, OR=1.75)
- Increased titration of analgesics in 24-48 h (p=0.005, OR=4.89)
- Increased titration of sedatives in 24-48 h (p<0.001, OR>100)

Association between 7 incidence of clinical seizures and 7 titration of sedatives in 24-48 h (p=0.04, OR=240) Association between 7 survival at 6 months and 2 titration of analgesics (p=0.048)

However, the causal relation of these findings cannot be proven.

Ceric A. Neurocrit Care 2023

Effects of hypothermia on the disposition of morphine, midazolam, fentanyl, and propofol

Compared with matched, normothermic patients:

- **7** $t_{1/2}$ morphine
- Cl_{tot} morphine, fentanyl, and propofol but not midazolam.

→ Reducing infusion rates of morphine, fentanyl, and propofol during TTM is encouraged

Bjelland TH. Dirug Metab Disp 2013

Factors predisposing to coma and delirium: fentanyl and midazolam exposure; CYP3A5, ABCB1, and ABCG2 gene polymorphisms and inflammatory factors

Comparison of two sedation regimens during TTM after cardiac arrest

Factors associated with delayed awakening in multivariate analysis.

Characteristic	OR	95% IC	Р
Age > 59 years	2.4	1.2-4.9	0.001
Post-resuscitation shock	2.6	1.3-5	0.004
GFR < 60 ml min ^{-1} at admission	2.6	1.3-5.3	0.009
Period P2 (propofol-remifentanil)	0.08	0.03-0.2	< 0.001

Reduced opioid use and ICU lengths after minimally invasive cardiac surgery- An observational retrospective study

Group 1 (N=41): ultrasound-guided pectoralis + serratus plane blocks with ropivacaine Group 2 (N=37): IV opioids (morphine 20-25 mg/day or tramadol 200-300 mg/day)

Torre DE. Life 2022

Clinical pharmacokinetic monitoring of midazolam

- MDZ = higher clearance and shorter half-life than other BZD - Good correlation plasma MDZ and α 1-OH MDZ / sedation - High interpatient variability (age, renal and liver function, CYP activity/gene polymorphism)

- No simple assay to quantitate MDZ

Because plasma MDZ to achieve a constant sedation is variable, it is more prudent to monitor for sedation with a validated clinical scale than by plasma concentrations

Although not routinely recommended, MDZ monitoring is likely beneficial in patients with neurologic damage in whom sedation cannot be assessed and patients with renal failure and prolonged time to awakening

Antiepileptics	Benzodiazepines Toxic encep	halop	athy
	Valproic acid ^a		
	Barbiturates ^a		
	Phenytoin		
	Gabapentin		
	Lacosamide		
	Carbamazepine ^b		
Psychiatrics	Tricyclic antidepressants		Clinic
	Selective serotonin reuptake inhibitors		- Del
	Neuroleptics		
	Lithium		- Sle
Oncologic	Methotrexate ^a		- Mvc
	L-asparaginase ^a		
	5-fluoro-uracil ^a		- Cra
	Ifosfamide		- Fyt
Immunosuppressants	Calcineurin inhibitors		
	Tacrolimus		
Antimicrobial agents	Betalactams (including carbapenems,	FP2	-T4 why
	cefepime)	T4-	02
	Fluoroquinolone	8.63	20 de 14
	Metrodinazole	FP2	-C4
	Linezolid	C4-	02
	Foscavir, aciclovir		
	Interferon alpha	FP1	·C3 ~~~
	Fluconazole	C3-	01 5400
Miscellaneous	Dopamine agonists	-	-
	Levodopa	891	-13
	Opioids	T3-	01
	Proton pump inhibitors	(.)	
	Baclofen	ECO	
	Loperamide		

Main drugs leading to toxic metabolic encephalopathy

Clinical presentation:

- Delirium
- Sleep disorders
- Myoclonus and asterixis
- Cranial nerve palsy
- Extrapyramidal signs and movement disorders

FP2-T4	and a second of the second s
T4-02	water and the second state of the second sec
FP2-C4	and the second second and the second se
C4-02	Industrian and supply for the first free production of the second s
FP1-C3	= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
C3-01	zeroszterene a szereszterene a szeresztere a s
FP1-T3	was present and the second
T3-01	and a second
ECG	Le Guennec L. Rev Neurol (Paris) 2022

Cefepime-induced neurotoxicity: systematic review

	Prevalence (%)	Median (IQR)
Latency period (days) ^a	114 (95.8) ^b	4.0 (3.0-6.0)
Clinical symptoms		
Altered mental status	111 (93.3)	
Myoclonus	44 (37.0)	
Non-convulsive seizure epilepticus	33 (27.7)	
Convulsive seizure	13 (10.9)	
Aphasia	13 (10.9)	
Focal deficit	4 (3.4)	
Laboratory findings		
Blood urea nitrogen (mg/dL)	46 (38.7)	54.5 (31.1-95.2)
Creatinine (mg/dL)	68 (57.1)	2.8 (1.7-5.3)
Drug monitoring		
Serum (plasma) trough level of cefepime (mg/L)	19 (16.0)	71.3 (48.1–160.0) (range 31.0–295.0)
CSF concentration of cefepime (mg/L)	4 (3.4)	13.5 (7.8–17.0) (range 6.1–18.0)
Electroencephalography		
Positive for triphasic waves	33 (27.7)	
Treatment		
Discontinuation of cefepime	116 (97.5)	
Dose reduction of cefepime	3 (2.5)	
Anti-epileptic drugs	44 (37.0)	
Haemodialysis	25 (21.0)	
Prognosis		
Improvement of CIN symptoms	116 (97.5) ^b	
Not reported	3 (2.5)	
Time until CIN symptom resolution from cefepime discontinuation (days)	89 (74.8) ^b	3.0 (2.0-5.0)
Death	9 (7.6) ^c	
	,	

Maan G. J Antimicrob Chemother 2022

EEG features of cefepimeinduced neurotoxicity

GRDA was the most frequent EEG pattern (26%), followed by GPD with or without triphasic waves.

GRDA, generalized rhythmic delta activity GPD, generalized periodic discharge TW, triphasic waves GSW, generalized spike-and-waves LPD, lateralized periodic discharge BIPD, bilateral independent periodic discharge LSW, lateralized spike-and-waves MfSW, multifocal spike-and-wave LRDA, lateralized rhythmic delta activity

Li HT. Neurocrit Care 2019

Cefepime-induced neurotoxicity: a systematic review

usually resolves with drug interruption

Payne LE. Crit Care 2017

Effect of high-dose baclofen on agitation-related events among patients with unhealthy alcohol use receiving mechanical ventilation – A RCT

Delayed awakening (no eye opening at 72h after cessation of sedative) occurred in 14 pts (8.9%) in the baclofen group vs 3 (1.9%) in the placebo group.

Vourc'h M. JAMA 2021

Strategies to minimize delirium incidence and avoid delayed awakening

- Daily interruption of sedation
- Use of sedation algorithm to avoid over-sedation
- Analgesia prioritization-based algorithm
- Patient-centered case-based on the assessment & treatment of specific symptoms (pain, anxiety, delusion)
- Improving cognition (reorientation, cognitive stimulation, use of clocks)
- Optimizing sleep (minimizing light and noise)
- Optimizing mobility (early rehabilitation)
- Optimizing hearing (hearing aids) and vision (glasses)

International guidelines do not recommend pharmacologic prevention of delirium, notably by haloperidol; risperidone, and dexmedetomidine

Primary delirium prevention principles

- Repeated reorientation
- Provisions of cognitively stimulating activities multiple times a day
- A sleep protocol
- Early mobilization
- Timely removal of catheters and physical restraints
- Use of eye glasses, magnifying lenses, hearing aids, and earwax disimpaction
- Correction of dehydration
- Use of a scheduled pain management protocol
- Minimization of unnecessary noise and tactile stimuli

Mnemonic	Clinical causes and interventions
<u>D</u> iseases	Evaluate the patient for new or worsening disease, such as congestive heart failure or sepsis, as well as other disease findings such as metabolic abnormalities
<u>D</u> rug <u>R</u> emoval	Look for and stop deliriogenic medications including benzodiazepines, antihistamines, and inappropriate opioids
<u>E</u> nvironment	Encourage daytime mobilization and remove restraints, provide frequent reorientation as well as cues such as clocks and windows to the outside, reduce night-time interventions to promote restful sleep

Proportional performance of ABCDEF bundle and patient outcomes

Mart MF. Semin Respir Crit Care Med 2021

What to do when a drug-related delay in awakening is suspected ?

- Detailed neurological examination
- Critical review of sedative drug schemes
- Time-course of renal and liver function
- Investigate potential drug-drug interactions
- EEG and PD tests (naloxone, flumazenil)
- Brain imaging (including MRI)
- Measurement of plasma concentrations of sedative drugs, with at least two time-points
- CYP3A4 and UGT2B4/UGT2B7 genotyping (MDZ)
- CYP2B6/2C9 and UGTAA genotyping (propofol)

- Prolonged tight observation

Take home messages

- **Delayed awakening** is frequent in patients requiring deep sedation and associated with increased morbidity and mortality

- Management is based on a systematic approach seeking for curable cause
- Investigation requires
 - → A cautious identification of drug exposures and exposure times
 - → A careful examination to report unexpected presentation
 - → Blood sampling for drug concentration measurement
 - → If possible: time-course of concentrations, PK parameters, metabolic ratios, genotyping
 - → Mechanistic hypotheses
- Studies are required to understand mechanisms, assess prognosis, and improve prevention